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SYNTHESIS OF THERMOSTATING DEVICES. III. MINIMIZATION 

OF THE ERROR OF THERMOSTATING 

G. N. Dul'nev, P. A. Korenev, 
A. V. Sigalov, and A. N. Solunin 

UDC 536.581 

The article suggests a method of choosing the design parameters for a heater- 
type thermostat. Approximate formulas are obtained for determining the dy- 
namic error in on-off control, and the problem of its minimization is dealt 
with. 

Statement of the Problem. Synthesis of the optimal design of a thermostating device 
presupposes the choice of design and regime parameters ensuring the minimum of some target 
function which also includes quality indices of the device to be designed. Among these 
indices may be the static and dynamic errors of thermostating, the time required to attain 
the operating regime, characteristics of weight and overall dimensions, etc. The problem 
of choosing the optimal design and regime parameters can be solved on the basis of various 
mathematical models of thermostats dealt with in [i]. If the mathematical model is not 
suitable for establishing a fairly simple analytical dependence of the target function on 
the variable parameters, then for the sake of optimal choice of parameters numerical methods 
of optimization have to be used or the problem has to be solved by the method of nonformal- 
ized scanning of the variants. Often it is found that both approaches are ineffective un- 
less the nature of the dependence of the quality indices on the variable parameters had been 
previously investigated and preliminary evaluations of the ranges had been obtained within 
which the optimal values of the parameters lie. It is advisable to carry out such a pre- 
liminary analysis with the aid of the simplest mathematical models that yield analytical 
expressions for the investigated quality indices. 

The present article examines the problem of minimizing the static and dynamic errors 
of thermostating by means of optimal choice of parameters of a heater-type thermostat on 
the basis of models with lumped parameters. As elements the simplest model contains the 
object of thermostating i, the chamber 2 with controlled power, and sensor 3 mounted on the 
chamber. We denote the temperature of these elements by tl, t2, and ts, and we write the 
system of equations of thermal balance [i]: 

p~ = c~ dt______~, + ~,~ (q _ t~) + ~ (h - -  &), ( 1 )  
aT 

P~ = C2 dt~ 

dr3 
0 = C3 ~ + ~3 (& - -  &) ~ a3o (t3 - -  &). ( 3 )  

The power P= o f  the  f i n a l  c o n t r o l  e l e m e n t  s i t u a t e d  on t h e  chamber depends  on t h e  t e m p e r -  
a t u r e  o f  t h e  s e n s o r  t 3. C o n f i n i n g  o u r s e l v e s  t o  c o n s i d e r i n g  o n - o f f  c o n t r o l ,  we w r i t e  t h i s  
dependence  in  t h e  form 
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Fig. i. Nature of the change 
of overheating of the thermo- 
stat elements in the regime of 
free oscillations. 

P~ = P8 (~3) = 

Pmax for ~}3( -- b or d~ a "--~x :> O, 

< 0  ' 

(4) 

where @3 = t3 - tt.s is the deviation of the temperature of the sensor from its setting tt. s. 

When a thermostating device is being designed, the values PI, CI, Olc characterizing the 
object are assumed to be specified. The object of the present work is to substantiate the 
choice of the parameters o12 , O2c, o23 , O3c , C2, C3, P2, b on the basis of the mathematical 
model (1)-(4). To choose these parameters, we will consider separately their effect on the 
static and dynamic components of the error of thermostating. 

Static Error. By static error Ast we mean the difference between the maximal and mini- 
mal values of the temperature of the object t I established upon change of temperature of the 
medium from t~ in to tc max. The expression for Ast has the form [2] 

~ t  (1 - -  8) q~x  ~m~ 1 + ~ / ~  (5)  
= ~c --~c j, e = I +a:Ja:~ 

From among the parameters subject to choice, relation (5) contains the thermal conducti- 
vities o12 , O3c , o23 which have to be chosen such that the static error is minimal. It can 
be seen from (5) that this is attained with e = i, i.e., with 

~aJ~u = ~/~=~. (6 )  

The t h e r m a l  c o n d u c t i v i t y  o12 depends  on t h e  method o f  f a s t e n i n g  t h e  o b j e c t  i n s i d e  t h e  
chamber  and on t h e  c o n d i t i o n s  o f  h e a t  ex ch an g e  be tween  t h e  o b j e c t  and t h e  chamber .  The r a n g e  
of possible change of the value of ox2 is determined at the stage when the basic model is 
selected. The thermal conductivities 023 and osc are characteristics of the temperature sen- 
sor that is used and of the method of mounting it in the chamber. These conductivities for 
each actual type of sensor and for certain conditions of mounting it are approximately known. 

The sequence of choosing the conductivities ensuring a minimal value of Ast is best ar- 
ranged in the following manner. First the actual value of o12 is chosen in the first approxi- 
mation from the interval [o12 mln, o12 max] determined in the selection of the basic model. 
Then, in accordance with relation (6), we choose the temperature sensor and the conditions of 
mounting it. Since the ratio O3c/O23 for different conditions changes discretely, we need 
a more accurate value of o12 to fulfill (6) accurately. In view of the inevitable differ- 
ences between the real conductivities in a finished structure and the assumed calculated va- 
lues, and also on account of the fact that in some cases the ranges of possible change of 
these conductivities cannot ensure that e = i, not in any combination, compensation of the 
static error [2] is envisaged in thermostats. 

Dynamic Error. By dynamic error we mean the amplitude of the oscillations A I of the 
temperature of the object in operating regime with constant ambient temperature. To obtain 
the expression for the dynamic error, we transform the system (i)-(3). For that purpose we 
determine the mean temperature of the object t I and of the chamber t2, and also the mean 
power of the heater P, as the solution of the steady-state problem corresponding to (1)-(3) 
with constant temperature of the sensor t s equal to the temperature of its setting tt.s: 
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F~ = 0. '~ + ,~,,~t~ + P~ , T~ = (0.28 + %)~t.~ - 0.~r 
0~2 @ (Yzc 0"23 

> = (0"12 ~- 0'23 ~-0"20 ) t--2- (712t-- 1 --  d~dt.s--z2~t~. 

(7) 

We will introduce into the consideration the magnitudes ~a, ~, ~a which are the devia- 
tions of the temperatures of the respective elements from their mean values: ~i(~) = ti(~) - 
ti, i = i, 2, 3. In Eq. (2) for the chamber we replace the thermal fluxes from the chamber 
to the object, the sensor, and the environment by their mean values oa~(t 2 - tz), o~3(t~ - 
tt.s) , O~c(t 2 - tc); below we will discuss this assumption. Then the system (1)-(3), writ- 
ten in deviations, assumes the form 

d~ c~ 

C 2 , d~2 
d~ 

d@3 c3 

- -  + (0.~2 + ~,~) ~ -- 0.~2e2 = O, 

= { - - ~ ,  0 < ~ < ~ ,  
A P =  m~x - P - - P ,  "~ ~-~ �9 < T, 

- -  -~- (0.23 -~- O'3e) @8 - -  CY23~2 = 0. 

(8) 

( 9 )  

( l O )  

The solution of the system (8)-(10) must satisfy the conditions of periodicity 

@~(0)=~(T) ,  i =  I, 2, 3, (11)  

and the conditions of continuity at the instants when the heater is switched over 

@~(%1--0) = @ i ( % 1 @ 0 ) ,  [ =  1, 2, 3. (12)  

With the adopted assumptions, the temperature of the chamber in the regime of free oscil- 
lations changes linearly (Fig. i), and the solution of Eq. (9) can be written in the form 

% (~) = 

7~ @~'~"-- - - ~ ,  0~<~<~,  
C2 

AP (i: 
(13)  

where 02 max, 02 min are the maximal and minimal values, respectively, of the deviation @2(T) 
at the instants �9 = 0, ~ = El; these values have to be determined later. 

The general solution of Eq. (i0) for the sensor has the form [3] 

~8 (~) = @8 (~*) exp (--  ma~ ) § exp ( "  m3~) [ 0.28 ~2 (~) exp (m3v) dT, (14)  
C8 

where m 3 = (o23 + O3c)/Ca is the cooling rate of the sensor; T* is the initial instant of the 
time interval under consideration; @2(T) is the dependence determined by relations (13). 

Bearing in mind that at the instants of switching the heater off (~ = 0) and on (~ = Tz) , 
the sensor is overheated by @3(0)= b and @a(~l) = -b, we can easily obtain from (14) the 
solutions that describe the change of overheating of the sensor @3(T) in the cooling and heat- 
ing sections of the chamber. The nature of the change of overheating is shown in Fig. I. We 
adopt the assumption that the sensor has low thermal inertia, i.e., its time constant I/m 3 
is substantially smaller than the cooling time T I and the heating time ~2 = T - ~z of the 
chamber. Then we may neglect the terms with exponential factors in the solution for @3(~), 
and assume that upon approach to the instants T I and T the overheating of the sensor changes 
linearly (see Fig. i), i.e., a regular regime of the second kind begins. On the sections 
of linear change of temperature the expressions for ~a(~) have the form: 

~3(~) = ~ ~2 (~) + C~m~ ~ < ~ 1 '  ( 1 5 )  

AP ] ,  p = ~23/(0.23 + % ) ,  ~i < �9 < T. ( 1 6 )  e3(~) = fi o2('0 c~m3 
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Fig. 2. Dependence of the amplitude of the free oscillations cal- 
culated by (22) on the parameter z and the duty factor 7- A1, ~ 
z, sec/~ 

Fig. 3. Nature of the dependence of the amplitude of the free os- 
cillations on the parameter z in accordance with (23): i) X < i/m3; 
2) X = i/m3; 3) X > i/m 3 (X = 2~7(i-7)/m1). 

It follows from the conditions (ii), (12) that %3(~i -0) = -b, %s(T) = b. Substituting 
these magnitudes into (15), (16) we can easily resolve them in respect to @2 min, %2 max and 
find the expression for the amplitude of the temperature oscillations of the chamber: 

max 

82 - - 8 2  = 2b ~ P C8 As = max m~. (~ + ~) (17) 
~ 3  C2(a23 + %~ 

Formula  (17 )  has  a s i m p l e  p h y s i c a l  mean ing :  t h e  f i r s t  t e r m  c h a r a c t e r i z e s  t h e  e f f e c t  o f  
t h e  zone  o f  a m b i g u i t y  o f  t h e  r e g u l a t o r ,  and t h e  s e c o n d  t e r m  c h a r a c t e r i z e s  t h e  t e m p e r a t u r e  l ag  
o f  t h e  s e n s o r  b e h i n d  t h e  t e m p e r a t u r e  o f  t h e  chamber  in  c o n s e q u e n c e  o f  i t s  t h e r m a l  i n e r t i a .  

I t  f o l l o w s  f rom (13)  t h a t  t h e  t i m e s  o f  c o o l i n g  ~ and o f  h e a t i n g  ~2 t h e  chamber  a r e  c o r -  
r e l a t e d  with the oscillation amplitude A 2 by the ratios 

= --@2 ). (18) 

Then the period of free oscillations T with a view to (17) is equal to 

C pm~x 
T = 2 A2. (19)  

~ a P  
We will now go over to determining the oscillation amplitude of the temperature of the ob- 

ject. For that we substitute expression (13) for @2(~) into Eq. (8). The solution of the 
equation of heat balance for the object has a form analogous to (14). To obtain simple ap- 
proximate dependences, we will consider the case of an object having great thermal inertia, 
i.e., its time constant i/m I : Ci/(o~2 + o~ c) exceeds considerably the period of free oscil- 
lations. Then, expanding the exponential factors in the solution for @I(T) into a Taylor 
series and confining ourselves to the terms containing the small parameter m1~ in the first 
degree, we obtain the expression for overheating of the object: 

@1(~) = ~ @ m1% - C2 , 0~<~<~, (20) 

where 

@I (~) = ~ + ml(~-- ~I) -- + - -  - -  
AP (T ~1))]  
C~ 2 " , T I ~ ' ~ < T  , (21)  

rain 1 (@~ax + @2 ), ~ - ~ / ( ~ 2  + ~Jo)- 
2 - 

The functions @i(~), determined by the relations (20), (21), have the extrema @i max and 
@l min at the instants T = ~z/2 and < = ~i + ~2/2, respecs Taking (18) into account, we 

find 
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and the amplitude of the temperature oscillations of the object A~ is 

AI = o13 A2T. (22) 
8C~ 

If the assumption that the object has great thermal inertia is incorrect, we can obtain 
a simple evaluation of the magnitude of the oscillation amplitude A I by replacing the linear 
change of temperature of the chamber ~2(T) by harmonic oscillations with the same amplitude 
A 2 and period T. In that case the amplitude of the temperature oscillations of the object 
is described by the expression 

1 

in  which  A 2 and T a r e  d e t e r m i n e d  in  a c c o r d a n c e  w i t h  ( 1 7 ) ,  ( 1 9 ) .  

Thus ,  t h e  o b t a i n e d  s i m p l e  a n a l y t i c a l  d e p e n d e n c e s  f o r  t h e  p a r a m e t e r s  o f  t h e  r eg ime  o f  f r e e  
o s c i l l a t i o n s  o f  t h e  t h e r m o s t a t  make i t  p o s s i b l e  t o  a n a l y z e  t h e  e x t r e m a l  p r o p e r t i e s  o f  t h e  
dynamic  e r r o r .  

We e m p h a s i z e  t h e  a s s u m p t i o n s  a d o p t e d  in  d e r i v i n g  t h e  a p p r o x i m a t e  d e p e n d e n c e s .  F i r s t l y ,  
i t  was assumed t h a t  t h e  changes  o f  t h e  t h e r m a l  f l u x e s  f rom t h e  chamber  t o  t h e  o b j e c t ,  t o  t h e  
s e n s o r ,  and to  t h e  e n v i r o n m e n t  compared w i t h  t h e  sum o f  t h e i r  mean v a l u e s  a r e :  

[~1~ (t2 - -  h )  + ~ (t~ - -  t~) + e~c (t~ c -  t~) - -  P ~ / ~  = 6~ (~) ~ I. 

S e c o n d l y ,  t h e  t ime  c o n s t a n t  o f  t h e  s e n s o r  has  t o  be s m a l l  compared w i t h  t h e  t i m e s  o f  c o o l i n g  
and h e a t i n g  o f  t h e  chamber :  

C3/[(~ + %e)rain (~, ~2)1 = 6a ~ I. 

These  two a s s u m p t i o n s  were  used  in  d e r i v i n g  e x p r e s s i o n s  ( 1 7 ) ,  (19)  f o r  A2 and T. Ex- 
p r e s s i o n  (22) for the amplitude A I is correct with the additional assumption that the time 
constant of the object is large: 

The error of the calculation by the approximate dependences was evaluated by comparing 
it with the results of the rigorous solution of the problem (1)-(4) obtained by the method 
of "fitting" the accurate analytical solutions for the sections of heating and cooling [4]. 
With ~i ~ 0.5, ~2 ~ 0.2, 63 ~ 0.3 the relative error of calculating the amplitude of the free oscilla- 
tions by (22) does not exceed 15%, and with ~i > 0.05, 62 ! 0.2, 63!0.3and0.i!zl/~zi5the 
error of calculation by (23) does not exceed 25%. An analysis of the parameters of real ther- 
mostat designs showed that the formulated constraints are fulfilled for a broad class of 
objects. 

To investigate the extremal properties of the dynamic error, we rewrite formula (22) in 
the form 

A1 = ~a~ [~(z, ~)]~ , (24)  
8C~ z (1 - -  ?) 

where 

(z, ~) = 2b ( ~  + ~~  z + C~ 

z = C2/P~ ? :~ /pmax,  0 < ? < 1 .  

It follows from (24) that the dynamic error increases monotonically with an increase of 
the parameters of 2 , b, C3, and decreases monotonically with an increase of o2s. The de- 
pendence of At(z, y) on the duty factor y and on the ratio z = Ci/P is of nonmonotonic na- 
ture. The shape of these dependences for the actual example considered below is shown in 
Fig. 2. From the necessary conditions of existence of an extremum 

OA1 O, OA1 = 0 
az a? 

we can easily obtain the optimal values Zop t and ~opt corresponding to the minimum of the 
dynamic error: 
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1 
~' = 0 , 5 ,  z = - -  
opt opt b 

C3a~.~ 

(c% + c%)~ 

A~ in = A1 (Zopt, Yop0 : 4b al~C.~ 
. , C 1 ( ~ 2 3  

(25) 

We note that the optimal value of the duty factor y = 0.5 is in agreement with the con- 
clusions arrived at by other authors, in particular by Ingberman et al. [2], and the recom- 
mendation for the choice of heat capacity of the chamber C 2 is a new result. 

An analogous investigation of the optimal values of z and ~ was carried out for the depen- 
dence (23) but the obtained formulas have a more cumbersome form. The qualitative form of 
the dependence Ai(z) plotted by formula (23) is shown in Fig. 3; with some combinations of 
parameters, the parameter z may remain without an extremum. 

The parameters z and y do not affect the static error Ast; the power of the final control 
element pmax and the heat capacity of the chamber C 2 in the synthesis of the thermostat may 
therefore be chosen from the conditions of minimum of the dynamic error (25). The values of 
o12 and the ratio o2s/O3c are determined in accordance with the method adopted above which 
is based on the analysis of the magnitude of the static error. The values b and C3, on 
which the dynamic error depends monotonically, have to be chosen such that the error At, 
determined by (22) or (23), does not exceed the permissible values. We note that after a 
preliminary choice of the thermostat parameters on the basis of the examined model with 
lumped parameters it is advisable to carry out more accurate calculations according to more 
complete models [i]. Then it is possible to pose the question of nonlinear programming and 
to realize it with the numerical method of optimization because the results obtained above 
make it possible to evaluate the nature of the dependence of the target function on the 
variable parameters and to evaluate the region where the optimal values lie. 

Example of the Choice of Thermostat Parameters. We thermostat an object whose heat capa- 
city C I is equal to 1.0 J/~ and the thermal contact with the environment is evaluated by 
the conductivity Oic = 0.05 W/~ There are no internal heat sources in the object (PI = 0). 
In the planned thermostat it is intended to use an on-off regulator with the width of the zone 
of ambiguity 2b = I~ and a sensor with the parameters C 3 = 0.2 J/~ c2~ = 0.5 W/~ C3c = 
0.025 W/~ Conductivity between the chamber and the environment is evaluated by the magni- 
tude O2c = 0.05 W/~ On the object the temperature t I = 70~ has to be maintained while 

the ambient temperature may change from tcmXn = 15 to tc maX = 35~ 

It is necessary to determine the conductivity between the object and the chamber o12 , 
the power of the final control element pmax, and the heat capacity of the chamber C 2. 

We determine the conductivity o12 on the basis of the requirement that there be no static 
error. Then, on the basis of (6), we obtain a12 = 0.i W/~ 

We determine the values of P and C 2 on the basis of the requirement of the minimal dy- 
namic error at an ambient temperature of 25~ with the mean value out of the possible ones. 
On the basis of the solution of the steady variant of system (i), P = 3.7 W. The optimal 
duty factor is y = 0.5; this corresponds to the heater power pmax = 7.4 W. The dynamic 
error is evaluated according to (22). The dependence of A I on the parameter z = C2/P with 
y = 0.5 is shown in Fig. 2. The minimum of A i equal to 0.08~ is attained with z = 0.726; 
this corresponds to the heat capacity of the chamber C 2 = 2.7 J/~ 

With the selected values of the parameters 0~2, pmax, and C 2 the dynamic error changes 
from 0.08~ (at 25~ to 0.09~ (at t c = tc mln or t = tcmaX). 

In the examined example all the three assumptions made in deriving the approximate depen- 
dences are correct: ~i = 0.4; 521T= 0 = 0.i; 6~ = 0.4. Consequently, the error of the cal- 
culations does not exceed 15%. 

NOTATION 

ti, Ci, temperatures and full heat capacities, respectively, of the object (i), the 
chamber (2), and of the sensor (3); PI, full power of the heat sources in the object; Clc, 
~ C3c, thermal eonductivities of the object, the chamber, and the sensor, respectively, 
to the environment; ~ a23, thermal conductivities between the chamber and the object, 
between the chamber and the sensor, respectively; b, half the width of the zone of ambi- 
guity of the regulator; %i (i = i, 2, 3), deviation of the temperatures of the elements from 
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their mean values tl, t2, t3 = tt.s; tt.s, set temperature of the sensor; P, pmax, mean 
and maximal power, respectively, of the final control element; T, period of free oscillations; 
Tl, ~2, cooling and heating time, respectively, of the chamber; A I, A 2, amplitudes of the 
temperature oscillations of the object and of the chamber, respectively; y, duty factor of 
the operation of the final control element. 
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SIMULATING THE COOLING OF SPIRAL COMPONENTS IN CIRCULATION 

SYSTEMS FOR GAS COOLING. PART i. SINGLE PANCAKE COIL 

B. A. Vakhnenko, V. I. Deer, 
and A. V. Filippov 

UDC 536.24:537.312.62 

A study has been made of the effects of design and thermal parameters on 
the temperature patterns and cooling times for pancake coils. 

A large superconducting magnet with circulating coolant is frequently built up from 
two-layer disk sections [i-3]; each layer or pancake is a flat (archimedean) spiral formed 
out of insulated hollow wire and embedded in epoxide resin. The cooling channels in adjacent 
pancakes are usually connected in parallel. The pancake coils in equipments may differ in 
design, conductor length, number of turns, and insulating material and thickness~ There 
is heat transfer through the insulation between turns and between coils, which sometimes 
has a substantial effect on the cooling. The mode of cooling must be chosen such that no 
dangerous thermal stresses arise, while the cooling time and coolant consumption are ac- 
ceptable. It is possible to choose a state meeting these requirements by solving the non- 
stationary conjugate heat-transfer problem. The term conjugate here incorporates the fact 
that it is necessary to solve the energy-conservation equations together for all the compo- 
nents in the heat-transfer system (channel walls and flows) [4, 5]. 

The cooling of a single adiabatic channel has been examined in most detail (with ideal 
insulation between turns for a spiral). If the thermal parameters and coolant flow rate are 
constant, one can obtain an analytic solution if the coolant temperature at the inlet 
changes stepwise [4]. To allow for the change in heat-transfer coefficient along the channel 
and for the temperature dependence of the thermophysical parameters, one has to use numeri- 
cal methods such as [6, 7] to solve the problem with general boundary conditions. 

It is recommended [8, 9] that the dimensionless parameter St* = =HL/(GcD) ~ should be used 
in distinguishing long channels (St* ~ 100) from short ones (St* i i0); lo~g~means that the 
zone of rapid heat transfer is substantially shorter than the channel, so one can use a tem- 
perature-step model to calculate the cooling [i0], which can be used with a coolant inlet 
temperature step to estimate the cooling time from T b = (Mc)w/(Gcp)g , which follows from the 
heat-balance equation, and also to determine the pressure drop or coolant flow rate. A for- 
mula has been given [9] for the cooling time for a short channel. 

An analytin solution can also be obtained [5, ii] for two parallel long channels with 
thermal interaction; solutions have been obtained for direct-flow and countercurrent forms of 
coolant motion for constant thermophysical parameters of the coolant wall, infinitely small 
thermal capacity of the bridge between channels, and inlet coolant temperature steps. In 
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